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where the thermodynamic potential { is seen to
increase with pressure and decrease with tension
at the stressed face. The melting point at the
free face is depressed for both compression and
tension. Here (¢o)rr=()rr always increases.
The ratio of lowering at the two faces is the
same as that found for (9a) and (Yb).

The number of atoms with Maxwellian ener-
gles in excess of that needed to break the lattice
bonds, i.e., the number of free migrating atoms,
increases with increase in temperature. At the
melting point this fraction of the total number
becomes unity. The factor

0= T/Tm, v (13)

where T denotes the constant experimental and
T, the melting temperature, has been used in
correlating temperature versuscreep data for
different metals. The behavior of a low melting
point metal is thus considered as equivalent in
behavior to a high melting point metal at a cor-
respondingly higher temperature to give the
same 6, other factors remaining unchanged. The
argument should be carried out in terms of
energy but, as compensation is here effected
through the % term this expression is a sufhciently
satisfactory approximation.

On combining (12a) and (13) and integrating’
we have

T—T0= ph In (0/00), (14:)

where p and k are here the mean values over the
range of integration.
For a sufficiently large load, i.e., for relatively

large creep rates, we may in the same manner as
‘before write

r—mi=K"1n (&/&), (15)
where K’ is'a physical constant and &, the steady
state or minimum creep rate. This is the ex-
pression that has been used for about thirty

years Lo express the empirical relation between

yield stress and minimum creep rate & in metal
mosaics. '

The expressions (12) and (15) were derived f{or
relatively large creep rates and thus for com-
pressive loads large enough to iron out the initial
inequaulities over a short period of time. Let us
assunie now that we are operating with either
very small stresses or with a substance that does

not “‘migrate” readily. For these conditions the
number of migrating units will be relatively few
and their paths much shorter. Thus, instead of
being able to picture a statistical streaming
action, we are slowed down to a hop-skip process
and can no longer set up a steady mecan {low.

" The crystallization process must be explicitly

considered here and for these cases we have for
mobility along the stressed surfaces.

]{(0/00):[{3(#—%0)//11; (1()&)
and for crystallization along the same surfaces
K(oo/lﬁ) = Keg—(r—70) lok, (le)

The creep rate will be given by the difference
between these two quantities or

(/e =K sty ——, 17
oh

The same reasoning and therefore a similar sinh
expression also replaces (12) for very small creep
rates.

An expression of this type was obtained em-
pirically'*by combining analytically the empirical
logarithmic relation for high creep rates (see Eq.
(13)) with the linear relation between stress and
creep rate observed for very low creep rates.

So far we have considered only the relation
between steady creep rate and stress. When
compressive load is first applied the irregularities
in the structure of the polycrystalline material
set up an initial localization of stress at the
raised points and thus, for large enough loads,
in an initially high creep rate. This rate gradu-
ally diminishes toward a steady state as the
original inhomogeneities of texture Dbecome
ironed out and the stress redistributes itself over
larger and larger surface areas. The effective
stress, for constant load, thus decreases with
time. Finally the pore spaces in the texture
become filled and the grains more or less reori-
ented into their most stable crystallographic
configuration for an axial load distribution. If
now a series of such creep-time tests is made for
varying compressive loads on initially identical
specimens this last state should be reached at

-+ For example sce H. Mussmann, Ann, d. Physik 31, 130
(1938).




